0% Complete
صفحه اصلی
/
The 5th International Conference on Electrical Machines and Drives
An Explainable AI Framework for High-Accuracy Fault Diagnosis and Sound Quality Engineering in Electric Motors
نویسندگان :
Amirhossein Ghadamossoltani
1
Mohammadali Sandidzadeh
2
Mohammad Mosavi Gazafroodi
3
Farzaad Soleimaani
4
1- دانشگاه علم و صنعت ایران
2- دانشگاه علم و صنعت ایران
3- دانشگاه علم و صنعت ایران
4- دانشگاه علم و صنعت ایران
کلمات کلیدی :
Acoustic Digital Twin،Deep Learning،Electric Motor،Fault Diagnosis،Sound Quality،Explainable AI (XAI)،Condition Monitoring
چکیده :
The hitherto exponential growth in the use of electric motors across important industries, ranging from domestic devices and sophisticated manufacture to EVs, has spawned an ever-increasing need for sophisticated condition monitoring and sound quality engineering methods. Conventional fault diagnostics are expensive and intrusive, while sound quality engineering is a labor-intensive discipline. The present work presents a novel and comprehensive paradigm called the Acoustic Digital Twin (ADT), which builds upon earlier digital twin theory. The ADT has been designed particularly for high-fidelity simulation and modeling of sound profiles that are attendant upon electric machines. It has two chief constituents: (1) an Acoustic Simulation Engine that includes deep generative neural networks and is proficient at generating raw audio signals for a specified set of operational parameters, and (2) a Diagnostic and Interpretation Engine that readily identifies faults by cross-validation between actual and anticipated audio data. By making use of Explainable AI (XAI) techniques, the latter engine doesn't only assign the nature of the fault but also returns an interpretative graphical visualization underlying its physical origin. The software is able to deliver fault diagnosis accuracy above 98% while simultaneously shortening the sound engineering design cycle by a maximum of 50%.
لیست مقالات
لیست مقالات بایگانی شده
Halbach-Enhanced Reluctance Magnetic Gear Assisted by Superconductive Flux Channels
Alireza Sohrabzadeh - Aghil Ghaheri
Investigation study of Injecting Numerous DGs in IEEE 69 – bus Radial Networks Using Enhanced PSO and Ant Lion Optimization Algorithms
Ali Altahir - Ahmed Rahim Ali - Shamam Alwash - Murtadha Al-Kaabi
Static Eccentricity Modeling in Coreless Axial Flux Permanent Magnet Machines Using Magnetic Equivalent Circuit Approach
Fatemeh Eslami - Mostafa Shahnazari - Mohammad Ebrahim Vaziri Sarashk
Multi-Filter Deep Learning Framework for Partial Discharge Localization in Generator Stators
Mehdi Nourollahi - Mohammad Hamed Samimi - Arash Abyaz - Ahmad Kalhor
Performance Investigation of a Novel Hybrid Reluctance Motor
Ali Harooni - Aghil Ghaheri - Sadegh Mollaei Saghin - Ebrahim Afjei
طراحی یک موتور آهنربای دائم سنکرون برای کاهش ریپل گشتاور جهت استفاده در خودروهای الکتریکی
محمدرضا کوهستانی - عباس شیری
Optimum Selection of Distribution Transformers for Tropical Regions Considering Thermal Aging
Hossein Amini - Mohammad Hamed Samimi - Amir Abbas Shayegani Akmal
تشخیص عیب عایقی میان لایهای هسته استاتور در موتورهای سه فاز القایی
بهرام نوری - منصور اوجاقی
Optimization of the Magnetic, Fast and Controllable Commutation Switch for Hybrid DC Circuit Breaker
Alireza Jaafari - Amir Sadeghi-Bahmani - Sadegh Mohsenzade - Ali A Razi-Kazemi
A Novel Non-Isolated DC–DC Converter with Hybrid Inductor–Capacitor Stages for High-Gain EV Application
Seyed Moein Mortezaie - Mohammad Sarvi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 43.0.1