0% Complete
صفحه اصلی
/
The 4th International Conference on Electrical Machines and Drives
A data-driven load shedding method based on generative adversarial networks considering missing data and unlearned fault
نویسندگان :
Nazanin Pourmoradi
1
Sasan Azad
2
Mohammadtaghi Ameli
3
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه شهید بهشتی
کلمات کلیدی :
Load shedding،generative adversarial،convolutional neural network،Rotor angle stability،missing data،unlearned fault
چکیده :
Event-based load shedding (ELS) is a critical emergency countermeasure against transient rotor angle instability in power systems. ELS based on deep learning has recently achieved promising results. However, in real-world power systems, model input data may be incomplete, and faults may occur that are not in the training database. In this situation, the accuracy of the model decreases. To address these problems, this paper presents a data-driven LS model based on transfer learning. First, the missing data challenge is solved by using a generative adversarial network (GAN), an algorithm for unsupervised deep learning based on two competing neural networks. Then, a convolutional neural network (CNN) model is trained for optimal LS. Finally, when the model encounters unlearned faults in the online application, transfer learning is used to update the model with a small database. The proposed model's test on the IEEE 39 bus system shows its effective performance.
لیست مقالات
لیست مقالات بایگانی شده
Analysis of the Impact of Initial Rotor Position Estimation Error on the Speed, Current, and Startup Torque of Synchronous Reluctance Motors Considering Magnetic Saturation
Farzad Bodaghi - Hamidreza Pairo
Analysis of Short-Circuit Fault Types in Switched Reluctance Generators for Low-Power Wind Turbine Applications
Emad Mirzaei - Hossein Torkaman - Milad Babalou
Few-Shot Learning for Precise Excitation-Winding Fault Localization in Resolvers
Ali Pour Ghoraba - Zahra Nasiri-Gheidari
Thermo‑Fluid Feasibility Analysis of Alternator Rotor Winding Replacement via Computational Fluid Dynamics
Omid Mahdavi keshavar - Ehsan Mohammadian - Hadi Zarafshani
Optimal Design for Enhanced Torque and Efficiency of a Dual-Stator Dual-Rotor Axial-Flux Switching PM Motor for Lightweight EVs
Mohammad Farahzadi - Mohammadreza Naeimi - Amir Ebrahimi Shohani - Fariba Farrokh - Mohammad Sedigh Toulabi - Karim Abbaszadeh
Effect of Global Vacuum Pressure Impregnation Parameters on Quality of Impregnated Stators
Fatemeh Ramezani - Ali Alaeddini - Mahdi Khademnahvi - Mansour Torabi
کنترل برداری با استفاده از کنترل کننده مدلغزشی برای موتور القایی تک فاز بدون حسگر سرعت با وجود نامعینی های پارامتری موتور
علی جعفری - مهرداد غلامی
Performance Comparison of Different Methods of Torque Ripple Reduction for Permanent Magnet-assisted Synchronous Reluctance Motor
Amir Hosein Amiri - Seyed Ehsan Abdollahi - Saeed Hasanzadeh
Improved Bearing Faults Detection in Induction Motor Through 2-D Convolutional Neural Network
Seyed Javad Mirmohammad Meiguni - Abolfazl Vahedi - Vahid Rahimi Bafrani - Akbar Rahideh
A Brief Review on the Application of Machine Learning for Transient Stability Prediction of Synchronous Generators to Proposing a Comparative Framework
Ali Abdalredha - Alireza Sobbouhi - ابوالفضل واحدی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 43.0.1