0% Complete
صفحه اصلی
/
The 5th International Conference on Electrical Machines and Drives
Fault Detection and Classification in Induction Motors :An Explainable Convolutional Neural Networks Approach
نویسندگان :
َAli Vahidi
1
Amirata Taghizadeh
2
Mohammadreza Toulabi
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Convolutional Neural Networks،Explainable Artificial intelligence،Fault detection،Induction motors،Thermography
چکیده :
Effective fault diagnosis in induction motors is crucial for maintaining operational safety and efficiency in industrial settings. While deep learning models, particularly Convolutional Neural Networks (CNNs), have shown great promise, their inherent black box nature often hinders their adoption due to a lack of transparency and trust. This paper addresses this challenge by presenting an end-to-end, explainable diagnostic framework that leverages thermal imaging for non-invasive fault classification. We develop a tailored CNN architecture that automatically learns discriminative features from thermal images to distinguish between various motor faults. To make the model's reasoning transparent, we integrate Explainable Artificial Intelligence (XAI) through the Gradient-weighted Class Activation Mapping (Grad-CAM) technique, which generates visual heatmaps highlighting the exact image regions influencing the model's predictions. Simulation results demonstrate the framework's high effectiveness, achieving 97.3% accuracy across 11 operational conditions. Critically, the XAI visualizations confirm that the model's decisions are based on physically relevant thermal signatures, successfully identifying both concentrated hotspots and more subtle, distributed fault patterns. This combined approach provides a solution that is not only accurate but also trustworthy for industrial predictive maintenance.
لیست مقالات
لیست مقالات بایگانی شده
Rotor Topology Modification for Torque Enhancement in Synchronous Reluctance Motors via GA-Driven Parametric Optimization
Amirhassan Mirzaei - Mansour Rafiee
Comparative Study and Performance Analysis of Axial Flux Permanent Magnet Motors for Electric Bicycle Applications
Ali akbar Ebrahimian - Seyed Abolfazl Davodi Amrei - Seyed Ehsan Abdollahi - Abdolreza Sheikholeslami - Jafar Adabi
A Comprehensive and Comparative Analysis of Multilevel Inverter Topologies: From Early Generations to Smart Innovations Using SiC/GaN and Machine Learning
Abbas Akbarzade Lelekami - Karim Abbaszade - Sadegh Parsa
2D Lumped Parameter Model for Temperature Prediction in a Radial Flux Switching Generator with Two Permanent Magnet Types
Ali Zarghani - Mohammad Farahzadi - Aghil Ghaheri - Karim Abbaszadeh - Hossein Torkaman - Ebrahim Afjei
Diagnosing Partial Demagnetization and Static Eccentricity in Surface Mounted Permanent Magnet Synchronous Motor
Mahdi Nikzad - Zahra Nasiri-Gheidari
Torque Profile Optimization of New Hybrid Reluctance Motor Using DOE Response Surface Methodology
Mohammad-Ali Mahmoudpour - Ali Harooni - Mojdeh Hossein Nejadi - Aghil Ghaheri - Ebrahim Afjei
Performance Analysis of Squirrel-cage Induction Motors with Asymmetric Double Skewed Bars
Amir Darjazini - Mansureh Karimi - Mehran Karimi - Mohsen Cheraghi
Control of a Modular, Dual Winding, Six-Phase Permanent Magnet Synchronous Motor as Four-Star Connections
Davood Maleki - Abolfazl Halvaei Niasar
Identification of Brushless DC Motor Parameters Using Meta-Heuristic Techniques
Amirhossein Sadeghi-Bahmani - Ramin Alipour-Sarabi
حفاظت ترنسفورماتور قدرت با استفاده از یک رله تفاضلی تطبیقی چند-ناحیهای
حسین حاجیان - سجاد توحیدی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 43.0.1